RESEARCH ARTICLE

Generating sets of finite singular transformation semigroups

Gonca Ayık • Hayrullah Ayık • Leyla Bugay • Osman Kelekci

Dedicated to the memory of John Mackintosh Howie (1936-2011).

Received: 12 August 2011 / Accepted: 17 February 2012 © Springer Science+Business Media, LLC 2012

Abstract J.M. Howie proved that Sing_n , the semigroup of all singular mappings of $\{1, \ldots, n\}$ into itself, is generated by its idempotents of defect 1 (in J. London Math. Soc. 41, 707–716, 1966). He also proved that if $n \ge 3$ then a minimal generating set for Sing_n contains n(n-1)/2 transformations of defect 1 (in Gomes and Howie, Math. Proc. Camb. Philos. Soc. 101. 395–403, 1987). In this paper we find necessary and sufficient conditions for any set for transformations of defect 1 in Sing_n to be a (minimal) generating set for Sing_n .

Keywords Singular transformation semigroups \cdot Idempotents \cdot (Minimal) generating set

1 Introduction

The full transformation semigroup \mathcal{T}_X on a set X and the semigroup analogue of the symmetric group S_X has been much studied over the last fifty years, in both the finite and the infinite cases. Among recent contributions are [1-3, 8]. Here we are concerned solely with the case where $X = X_n = \{1, ..., n\}$, and we write respectively T_n and S_n rather than \mathcal{T}_{X_n} and \mathcal{S}_{X_n} . Moreover, the semigroup $T_n \setminus S_n$ of all singular self-maps of X_n is denoted by Sing_n. (For unexplained terms in semigroup theory, see [7]). Let S be any semigroup, and let A be any nonempty subset of S. Then the subsemigroup generated by A, that is the smallest subsemigroup of S containing A, denoted by $\langle A \rangle$. It is well known that the *rank* of Sing_n, defined by

 $\operatorname{rank}(\operatorname{Sing}_n) = \min\{|A| : \langle A \rangle = \operatorname{Sing}_n\},\$

Communicated by Steve Pride.

G. Ayık (⊠) · H. Ayık · L. Bugay · O. Kelekci Department of Mathematics, Çukurova University, Adana, Turkey e-mail: agonca@cu.edu.tr

is equal to n(n-1)/2 for $n \ge 3$ (see [4]). The *idempotent rank*, defined as the cardinality of a minimal generating set of idempotents, of Sing_n is also equal to n(n-1)/2 (see [6]). Recently, it has been proved in [3] that, for $2 \le r \le m \le n$, the (m, r)-rank, defined as the cardinality of a minimal generating set of (m, r)-path-cycles, of Sing_n is once again n(n-1)/2. The main goal of this study is to investigate whether a given subset A of transformations of defect 1 in Sing_n is a (minimal) generating set for Sing_n .

Let $\alpha \in T_n$. The *Defect set*, *defect*, *kernel* and *Fix* of α are defined by

$$Def(\alpha) = X_n \setminus im(\alpha)$$
$$def(\alpha) = |Def(\alpha)|$$
$$ker(\alpha) = \{(x, y) \in X_n \times X_n : x\alpha = y\alpha\}$$
$$Fix(\alpha) = \{x \in X_n : x\alpha = x\},$$

respectively. For any $\alpha, \beta \in T_n$, it is well known that $\ker(\alpha) \subseteq \ker(\alpha\beta)$, $\operatorname{im}(\alpha\beta) \subseteq \operatorname{im}(\beta)$, and that

$$(\alpha, \beta) \in \mathcal{D} \quad \Leftrightarrow \quad \left| \operatorname{im}(\alpha) \right| = \left| \operatorname{im}(\beta) \right| \quad \Leftrightarrow \quad \operatorname{def}(\alpha) = \operatorname{def}(\beta)$$

 $(\alpha, \beta) \in \mathcal{H} \quad \Leftrightarrow \quad \operatorname{ker}(\alpha) = \operatorname{ker}(\beta) \text{ and } \operatorname{im}(\alpha) = \operatorname{im}(\beta).$

We denote the \mathcal{D} -Green class of all singular self maps of defect r by D_{n-r} $(1 \le r \le n-1)$. It is clear that $\alpha \in D_{n-1}$ if and only if there exist $i, j \in X_n$ with $i \ne j$ such that ker(α) is the equivalence relation on X_n generated by $\{(i, j)\}$, or equivalently, generated by $\{(j, i)\}$. In this case we define the set Ker(α) by

$$\operatorname{Ker}(\alpha) = \{i, j\}.$$

(Notice that ker(α) denotes an equivalence relation on X_n , and that Ker(α) denotes a subset of X_n .) Equivalently, $\alpha \in D_{n-1}$ if and only if there exists $k \in X_n$ such that $Def(\alpha) = \{k\}$. It is well known that $\alpha \in T_n$ is an idempotent element if and only if the restriction of α to im(α) is the identity map on im(α). We denote the set of all idempotents in a subset A of T_n by E(A). Let α be in $E(D_{n-1})$ with $Def(\alpha) = \{i\}$. Then there exists unique $j \in X_n$ such that $i \neq j$ and $i\alpha = j$. In this case we write

$$\alpha = \zeta_{i,j} = \binom{i}{j}.$$

A digraph Π is called *complete* if, for all pairs of vertices $u \neq v$ in $V(\Pi)$, either the directed edge $(u, v) \in E(\Pi)$ or the directed edge $(v, u) \in E(\Pi)$. For two vertices $u, v \in V(\Pi)$, if there exist a directed path from u to v then we say u is *connected* to v in Π . We say Π is *strongly connected* if, for any two vertices $u, v \in V(\Pi)$, u is connected to v in Π .

Let *A* be a subset of $E(D_{n-1}) = \{\zeta_{i,j} : i, j \in X_n \text{ and } i \neq j\}$. Then we define the digraph Δ_A as follows:

- the vertex set of Δ_A , denoted by $V = V(\Delta_A)$, is X_n ; and
- the directed edge set of Δ_A , denoted by $\vec{E} = \vec{E}(\Delta_A)$, is

$$\vec{E} = \{(j,i) \in V \times V : \zeta_{i,j} \in A\}.$$

For any subset A of $E(D_{n-1})$ it is shown in [6] that A is a minimal generating set for Sing_n if and only if the digraph Δ_A is complete and strongly connected.

Now let *A* be a nonempty subset of D_{n-1} . Then we define another digraph Γ_A as follows:

- the vertex set of Γ_A , denoted by $V = V(\Gamma_A)$, is A; and
- the directed edge set of Γ_A , denoted by $\vec{E} = \vec{E}(\Gamma_A)$, is

$$\vec{E} = \{ (\alpha, \beta) \in V \times V : \operatorname{Def}(\alpha) \subseteq \operatorname{Ker}(\beta) \}.$$

The main goal of this paper is to prove that any subset *A* of D_{n-1} is a (minimal) generating set for Sing_n if and only if, for each idempotent $\zeta_{i,j} \in E(D_{n-1})$, there exist $\alpha, \beta \in A$ such that

- (i) $\text{Ker}(\alpha) = \{i, j\},\$
- (ii) $\text{Def}(\beta) = \{i\}$, and
- (iii) α is connected to β in the digraph Γ_A .

Moreover, for $A \subseteq E(D_{n-1})$, we show that the directed graph Δ_A is complete and strongly connected if and only if, for each idempotent $\zeta_{i,j} \in E(D_{n-1})$, there exist $\alpha, \beta \in A$ such that $\text{Ker}(\alpha) = \{i, j\}$, $\text{Def}(\beta) = \{i\}$ and that α is connected to β in the digraph Γ_A . Therefore, the main result of this paper includes the result of [6, Theorem 1].

2 Preliminaries

For an $\alpha \in D_{n-1}$ with $\text{Ker}(\alpha) = \{i, j\}$ and $\text{Def}(\alpha) = \{k\}$ we define the idempotents α^e and α^f , and the permutation α^p on X_n as follows:

First we define α^e as

either
$$\alpha^e = \begin{pmatrix} i \\ j \end{pmatrix}$$
 or $\alpha^e = \begin{pmatrix} j \\ i \end{pmatrix}$.

In the first case we define

$$\alpha^{f} = \begin{pmatrix} k \\ i\alpha \end{pmatrix} \quad \text{and} \quad x\alpha^{p} = \begin{cases} k & x = i \\ x\alpha & x \neq i, \end{cases}$$

and in the second case we define

$$\alpha^{f} = \begin{pmatrix} k \\ j\alpha \end{pmatrix} \quad \text{and} \quad x\alpha^{p} = \begin{cases} k & x = j \\ x\alpha & x \neq j. \end{cases}$$

Notice that in both cases

$$\alpha^f = \begin{pmatrix} k \\ i\alpha \end{pmatrix} = \begin{pmatrix} k \\ j\alpha \end{pmatrix},$$

and we have

$$\alpha = \alpha^e \alpha^p = \alpha^p \alpha^f. \tag{1}$$

For example, if $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 4 & 2 \end{pmatrix}$ then, since $\text{Ker}(\alpha) = \{1, 2\}$ and $\text{Def}(\alpha) = \{1\}$, we have

$$\alpha = \alpha^{e} \alpha^{p} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \alpha^{p} \alpha^{f}$$

or

$$\alpha = \alpha^{e} \alpha^{p} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \alpha^{p} \alpha^{f}.$$

It is well known that each element in Sing_n can be written as a product of idempotents from $E(D_{n-1})$. Now we state a very easy lemma which will be useful throughout this paper.

Lemma 1 For $i \neq j, k$ we have $\binom{i}{j}\binom{i}{k} = \binom{i}{j}$.

Lemma 2 For $n \ge 3$ let $\alpha, \beta \in D_{n-1}$. Then $\alpha\beta \in D_{n-1}$ if and only if $Def(\alpha) \subseteq Ker(\beta)$.

Proof With the notation in (1), since $\alpha\beta = (\alpha^p \alpha^f)(\beta^e \beta^p)$, it follows that $\alpha\beta \in D_{n-1}$ if and only if $\alpha^f \beta^e \in D_{n-1}$.

(⇒) Suppose that $\alpha\beta \in D_{n-1}$, and that $\text{Def}(\alpha) = \{i\}$ and $\text{Ker}(\beta) = \{k, l\}$. Then either $\beta^e = \binom{k}{l}$ or $\beta^e = \binom{l}{k}$, and there exists $i \neq j \in X_n$ such that $\alpha^f = \binom{i}{j}$. In both cases *i* must be equal to either *k* or *l* since $\alpha^f \beta^e \in D_{n-1}$.

(⇐) Suppose that $\text{Def}(\alpha) = \{i\} \subseteq \text{Ker}(\beta)$. Then there exists $i \neq k \in X_n$ such that $\text{Ker}(\beta) = \{i, k\}$. Since we can take $\beta^e = \binom{i}{k}$, it follows from Lemma 1 and (1) that

$$\begin{aligned} \alpha\beta &= \left(\alpha^{p}\alpha^{f}\right)\left(\beta^{e}\beta^{p}\right) = \alpha^{p}\left(\alpha^{f}\beta^{e}\right)\beta^{p} \\ &= \left(\alpha^{p}\alpha^{f}\right)\beta^{p} = \left(\alpha^{e}\alpha^{p}\right)\beta^{p} \\ &= \alpha^{e}\left(\alpha^{p}\beta^{p}\right). \end{aligned}$$

Since $\alpha^e \in E(D_{n-1})$ and $\alpha^p \beta^p \in S_n$, it follows that $\alpha \beta = \alpha^e (\alpha^p \beta^p) \in D_{n-1}$, as required.

Denote the \mathcal{H} -Green class containing the idempotent $\binom{i}{j}$ in D_{n-1} by $H_{i,j}$. Then it is clear that $\alpha \in H_{i,j}$ if and only if $\text{Def}(\alpha) = \{i\}$ and $\text{Ker}(\alpha) = \{i, j\}$.

Lemma 3 Let $\alpha \in D_{n-1}$. Then $\alpha \in H_{i,j}$ if and only if there exists a permutation $\beta \in S_n$ such that $\alpha = {i \choose i} \beta$ and $i \in \text{Fix}(\beta)$.

Proof (\Rightarrow) Suppose that $\alpha \in H_{i,j}$. Since $\text{Def}(\alpha) = \{i\}$ and $\text{Ker}(\alpha) = \{i, j\}$, we can take $\alpha^e = {i \choose j}$. Moreover, it follows from the definition of α^p that $i \in \text{Fix}(\alpha^p)$. Thus, from (1), we have $\alpha = \alpha^e \alpha^p$, as required.

(⇐) Suppose that there exists a permutation $\beta \in S_n$ such that $\alpha = {i \choose j}\beta$ and $i \in Fix(\beta)$. Since $\beta \in S_n$ and $i \in Fix(\beta)$, it is clear that

$$\operatorname{im}(\alpha) = \operatorname{im}\left(\binom{i}{j}\right) = X_n \setminus \{i\}$$

and that $\text{Ker}(\alpha) = \{i, j\}$. Hence, $\alpha \in H_{i,j}$, as required.

3 Generating Set

Theorem 4 Let A be a subset of the \mathcal{D} -Green class D_{n-1} . Then A is a generating set of Sing_n if and only if, for each idempotent $\binom{i}{j} \in E(D_{n-1})$, there exist $\alpha, \beta \in A$ such that

- (i) $\text{Ker}(\alpha) = \{i, j\},\$
- (ii) $\text{Def}(\beta) = \{i\}, and$
- (iii) α is connected to β in the digraph Γ_A .

Proof (\Rightarrow) Suppose that *A* is a generating set for Sing_{*n*}. Then, for each $\zeta_{i,j} = {i \choose j} \in E(D_{n-1})$, there exist $\alpha_1, \ldots, \alpha_r \in A$ such that

$$\alpha_1 \cdots \alpha_r = \zeta_{i,j}.$$

Since $\alpha_1, \ldots, \alpha_r, \zeta_{i,j} \in D_{n-1}$, $\ker(\alpha_1) \subseteq \ker(\zeta_{i,j})$ and $\operatorname{im}(\zeta_{i,j}) \subseteq \operatorname{im}(\alpha_r)$, it follows that

$$\operatorname{Ker}(\alpha_1) = \operatorname{Ker}(\zeta_{i,j}) = \{i, j\},$$
$$\operatorname{Def}(\alpha_r) = \operatorname{Def}(\zeta_{i,j}) = X_n \setminus \operatorname{im}(\zeta_{i,j}) = \{i\}$$

and that, for each $1 \le k \le r - 1$, we have $\alpha_k \alpha_{k+1} \in D_{n-1}$. Then, from Lemma 2, we have $\text{Def}(\alpha_k) \subseteq \text{Ker}(\alpha_{k+1})$. Hence there exists a directed path from α_1 to α_r , that is α_1 is connected to α_r in Γ_A , as required.

(\Leftarrow) Since each element in Sing_n can be written as a product of idempotents in D_{n-1} , it is enough to show that $E(D_{n-1}) \subseteq \langle A \rangle$.

Let $\zeta_{i,j} \in E(D_{n-1})$. From (i) and (ii) there exist $\alpha, \beta \in A$ such that $\text{Ker}(\alpha) = \{i, j\}$ and $\text{Def}(\beta) = \{i\}$. Then it follows from (iii) that there exists a directed path from α to β , say

 $\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_{r-1} \rightarrow \alpha_r = \beta$

such that, for each $1 \le t \le r - 1$,

$$\operatorname{Def}(\alpha_t) \subseteq \operatorname{Ker}(\alpha_{t+1}).$$

Since $\text{Def}(\alpha_t) \subseteq \text{Ker}(\alpha_{t+1})$ for each $1 \leq t \leq r-1$, it follows from Lemma 2 inductively that $\alpha_1 \cdots \alpha_r \in D_{n-1}$, and so $\text{Ker}(\alpha) = \text{Ker}(\alpha_1 \cdots \alpha_r)$ and $\text{im}(\beta) = \text{im}(\alpha_1 \cdots \alpha_r)$. Therefore, $\alpha_1 \cdots \alpha_r \in H_{i,j}$. Since $H_{i,j}$ is a finite group with the identity $\zeta_{i,j}$, it follows that there exists a positive integer *m* such that $\zeta_{i,j} = (\alpha_1 \cdots \alpha_r)^m \in \langle A \rangle$, as required.

Since rank(Sing_n) = $\frac{n(n-1)}{2}$, a generating set of Sing_n with $\frac{n(n-1)}{2}$ elements is a minimal generating set. Thus we have the following corollary from Theorem 4:

Corollary 5 Let A be a subset of D_{n-1} with $\frac{n(n-1)}{2}$ elements. Then A is a minimal generating set of Sing_n if and only if, for each idempotent $\binom{i}{j} \in E(D_{n-1})$, there exist $\alpha, \beta \in A$ such that

- (i) $\text{Ker}(\alpha) = \{i, j\},\$
- (ii) $\text{Def}(\beta) = \{i\}, and$
- (iii) α is connected to β in the digraph Γ_A .

4 Remarks

From Theorem 4 and [6] we have the following result with the notation above:

Corollary 6 Let A be a subset of $E(D_{n-1})$ with $\frac{n(n-1)}{2}$ elements. Then the directed graph Δ_A is complete and strongly connected if and only if, for each idempotent $\binom{i}{i} \in E(D_{n-1})$, there exist $\alpha, \beta \in A$ such that

- (i) $\text{Ker}(\alpha) = \{i, j\},\$
- (ii) $\text{Def}(\beta) = \{i\}, and$
- (iii) α is connected to β in the digraph Γ_A .

In other words, the main result of J.M. Howie in [6] coincides with our Theorem 4 when A is a subset of $E(D_{n-1})$ with $\frac{n(n-1)}{2}$ elements.

For example, let $A = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$ where

$$\alpha_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 1 & 2 \end{pmatrix}, \qquad \alpha_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 4 & 2 \end{pmatrix},$$

$$\alpha_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 2 \end{pmatrix}, \qquad \alpha_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 1 & 4 \end{pmatrix},$$

$$\alpha_5 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 3 \end{pmatrix}, \qquad \alpha_6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 1 \end{pmatrix}.$$

With the notation above, for $\zeta_{1,2} \in E(D_{4-1})$, we have $\text{Ker}(\alpha_1) = \{1, 2\}$ and $\text{Def}(\alpha_3) = \{1\}$. Similarly, for all other elements of $E(D_{4-1})$, it can be shown that conditions (i) and (ii) of Theorem 4 are satisfied.

Moreover, Γ_A :

is a Hamiltonian digraph since the cycle

 $\alpha_5 \rightarrow \alpha_3 \rightarrow \alpha_2 \rightarrow \alpha_4 \rightarrow \alpha_6 \rightarrow \alpha_1 \rightarrow \alpha_5$

is a Hamiltonian cycle. Hence, Γ_A is strongly connected, and so condition (iii) of Theorem 4 is satisfied. Therefore, A is a (minimal) generating set of Sing₄.

Indeed, since

$$\begin{split} \zeta_{1,2} &= (\alpha_1 \alpha_3)^3, \qquad \zeta_{1,3} = \alpha_2 \alpha_6 \alpha_5 \alpha_3, \qquad \zeta_{1,4} = \alpha_3^3 \\ \zeta_{2,1} &= \alpha_1 \alpha_6, \qquad \zeta_{2,3} = (\alpha_4 \alpha_6)^2, \qquad \zeta_{2,4} = (\alpha_5 \alpha_6)^2 \\ \zeta_{3,1} &= \alpha_2^3, \qquad \zeta_{3,2} = \alpha_4^2, \qquad \zeta_{3,4} = (\alpha_6 \alpha_4)^2 \\ \zeta_{4,1} &= (\alpha_3 \alpha_1)^3, \qquad \zeta_{4,2} = \alpha_5^3, \qquad \zeta_{4,3} = (\alpha_6 \alpha_5)^2, \end{split}$$

it follows that $E(D_{4-1}) \subseteq \langle A \rangle$, and so A is a (minimal) generating set for Sing₄. Notice that, to write each $\zeta_{i,j} \in E(D_{4-1})$ as a product of elements of A above, we use the paths in Γ_A . Therefore, Γ_A is also useful for writing the idempotents of defect 1 as a product of elements of A.

Acknowledgements The authors would like to thank Nesin Mathematics Village (Şirince-Izmir, Turkey) and its supporters for providing a peaceful environment where some parts of this research was carried out.

References

- 1. André, J.M.: Semigroups that contain all singular transformations. Semigroup Forum 68, 304–307 (2004)
- Ayık, G., Ayık, H., Howie, J.M.: On factorisations and generators in transformation semigroup. Semigroup Forum 70, 225–237 (2005)
- Ayık, G., Ayık, H., Howie, J.M., Ünlü, Y.: Rank properties of the semigroup of singular transformations on a finite set. Commun. Algebra 36(7), 2581–2587 (2008)
- 4. Gomes, G.M.S., Howie, J.M.: On the ranks of certain finite semigroups of transformations. Math. Proc. Camb. Philos. Soc. **101**, 395–403 (1987)

- 5. Howie, J.M.: The subsemigroup generated by the idempotents of a full transformation semigroup. J. Lond. Math. Soc. **41**, 707–716 (1966)
- Howie, J.M.: Idempotent generators in finite full transformation semigroups. Proc. R. Soc. Edinb. A 81, 317–323 (1978)
- 7. Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, New York (1995)
- 8. Kearnes, K.A., Szendrei, Á., Wood, J.: Generating singular transformations. Semigroup Forum 63, 441-448 (2001)